Parametric Visualization of High Resolution Correlated Multi-spectral Features Using PCA

نویسندگان

  • Alexander Broersen
  • Robert van Liere
  • Ron M. A. Heeren
چکیده

An imaging mass spectrometer is an analytical instrument that can determine the spatial distribution of chemical compounds on complex surfaces. The output of the device is a multi-spectral datacube; a three-dimensional (3D) dataset in which the xy-dimension represents the surface position and the z-dimension represents the mass spectral distribution. Analysts try to discover correlations in spectral profiles and spatial distributions inside a datacube. New technological developments allow mass spectrometric imaging on a higher spatial and spectral resolution. In this paper we present a parametric visualization technique which allows an analyst to examine spectral and spatially correlated patterns on the highest possible resolution. Principal component analysis (PCA) is used to decompose the datacube into several discriminating components. We represent these extracted features as abstract geometric shapes and use three parameters to allow for data exploration. The first parameter thresholds the spectral contribution at which an extracted component is visualized. The level of detail the shapes is controlled by a second parameter and a third parameter determines at which density-level the extracted feature is represented. This new visualization technique enables an analyst to select the most relevant spectral correlations and investigate their specific spatial distribution. With this method, less noise is included in the visualization of extracted features and by introducing various levels of detail the full spectral resolution can be utilized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از تبدیل PCA مکانی جهت ادغام تصاویر چند طیفی و تک رنگ

Obtaining of an image with high spectral and spatial resolution is the goal of image fusion. The PCA is a well-known pan-sharpening approach widely used for its efficiency and high spatial resolution. However, it can distort the spectral characteristics of the multispectral images. To avoid the weak points of the standard PCA technique, Spatial PCA transform has been proposed and the reasons of...

متن کامل

Object Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images

Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...

متن کامل

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

کاربرد تصاویر ماهواره ای لندست (+ETM) در آشکارسازی هاله های دگرسانی و جداسازی واحدهای سنگ شناسی در منطقه میانه - آذربایجانشرقی

The alka line and calc-alkaline volcanic activities in Mianch have reactivated the hydrothermal so lutions, resulting in the fonnation of epithermal mineralization in the region. The mineralized zone trending NWSE, and has been affected by NE-SW bended and folded structures. The precious and base metals mineralization are confined to structurally hended zone. Landsat-7(ETMJ data were used ...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007